

DPP No. 43

Total Marks:32 Max. Time:36 min.

Topics :	Solution of Triangle, Application of Derivatives, Straight Line			
Type of Questions			М.М.	, Min.
Single cl	noice Objective (no negative marking) Q. 1,2	(3 marks, 3 min.)	[6,	6]
Subjective Questions (no negative marking) Q.3,4,5,6,7,8		(4 marks, 5 min.)	[26,	30]

1. For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is

(A) There is a regular polygon with $\frac{r}{R} = \frac{1}{\sqrt{2}}$. (B) There is a regular polygon with $\frac{r}{R} = \frac{2}{3}$.

(C) There is a regular polygon with
$$\frac{r}{R} = \frac{\sqrt{3}}{2}$$
. (D) There is a regular polygon with $\frac{r}{R} = \frac{1}{2}$

2. If in triangle ABC, $r_1 = 2r_2 = 3r_3$, D is the middle point of BC. Then $\cos \angle ADC$ is equal to

(A)
$$\frac{7}{25}$$
 (B) $-\frac{7}{25}$ (C) $\frac{24}{25}$ (D) $-\frac{24}{25}$

- 3. Two men P and Q start with velocities v at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being separated.
- 4. ABC is a triangle and D is the middle point of BC. If AD is perpendicular to AC, prove that

 $\cos A \cdot \cos C = \frac{2(c^2 - a^2)}{2c^2}$

5. With usual notation In a $\triangle ABC$, a, c, A are given and $b_2 = 2b_1$, where b_1 , b_2 are two values of the thrid side, then prove that $3a = c\sqrt{(1+8\sin^2 A)}$

6. If
$$2f(x) = f(xy) + f\left(\frac{x}{y}\right)$$
 for all $x, y, \in \mathbb{R}^+$, $f(1) = 0$ and $f'(1) = 1$, then find $f(e)$ and $f'(2)$.

- 7. Through the origin O, a straight line is drawn to cut the lines $y = m_1 x + c_1$ and $y = m_2 x + c_2$ at Q and R respectively. Find the locus of the point P on this variable line, such that OP is the geometric mean between OQ and OR.
- The circle $x^2 + y^2 = 1$ cuts the x-axis at P & Q. Another circle with centre at Q and variable radius 8. intersects the first circle at R above x-axis and the line segment PQ at S. Find the maximum area of the ∆QSR.

Get More Learning Materials Here :

CLICK HERE

Answers Key

1. (B) **2.** (B) **3.**
$$v\sqrt{(2-\sqrt{2})}$$

6. $f(e) = 1$, $f'(2) = \frac{1}{2}$ **7.** $(y - m_1 x) (y - m_2 x) = c_1 c_2$
8. $\frac{4\sqrt{3}}{9}$

Get More Learning Materials Here : 💻

